Evaluation of herbal essential oil as repellents against *Aedes aegypti* (L.) and *Anopheles dirus* Peyton & Harrion

Duangkamon Sritabutra*, Mayura Soonwera, Sirirat Waltanachanobon, Supaporn Poungjai

Entomology and Environmental Programme, Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

ARTICLE INFO

Article history:
Received 11 July 2011
Received in revised form 4 August 2011
Accepted 23 August 2011
Available online 10 September 2011

Keywords:
Herbal essential oils
Repellents
Mosquito vectors
Aedes aegypti
Anopheles dirus
Feeding deterrents
Protection time
Biting rate
Repellent activity

ABSTRACT

Objective: To investigate the repellent activity of herbal essential oils from garlic (*Allium sativum*), clove (*Syzygium aromaticum*), lemon grass (*Cybopogon nardus*), eucalyptus (*Eucalyptus globulus*), orange (*Citrus sinensis*) and sweet basil (*Ocimum basilicum*) and their combinations against *Aedes aegypti* (*Ae. aegypti*) and *Anopheles dirus* (*An. dirus*) Peyton & Harrion under laboratory conditions.

Methods: In laboratory condition, 0.1 mL of each essential oil was applied to 3–10 cm of exposed area on a volunteer’s forearm. The test was carried out every 30 min until fewer than two mosquitoes bit or land during the 3 min study period and then the repellency test was stopped.

Results: Essential oil from lemon grass exhibited protection against biting from two mosquito species, for *Ae. aegypti* [98.00±15.28 min protection time and 0.80% biting rate] and for *An. dirus* [98.66±11.56 min protection time and 0.80% biting rate]. The combinations from eucalyptus oil and sweet basil oil were effective as repellents and feeding deterrents against *Ae. aegypti* [98.87±10.28 min protection time and 0.90% biting rate] and for *An. dirus* [210±10.70 min protection time and 0.93% biting rate]. All herbal repellents exhibited the period of protection time against *Ae. aegypti* which was lower than 120 min. **Conclusions:** It can be concluded that oils of lemon grass and combination from eucalyptus–sweet basil are the most effective in repellent activity.

1. **Introduction**

Aedes aegypti (*Ae. aegypti*) (L.) and *Anopheles dirus* (*An. dirus*) Peyton & Harrion are the major vectors for dengue fever, yellow fever, chikungunya and malaria diseases responsible for a number of morbidity and mortality around the world, especially in tropical and sub–tropical regions[1-2].

However, the only efficient way to control these diseases is to control mosquito vector populations and prevent mosquito bites. Insect repellents are known to play an important role in preventing the mosquito vector, deterring an insect from flying to, landing on or biting human and animal skin. Widely used compounds as insect repellents are synthetic chemical repellents which are not safe for humans, especially children, domestic animals because they may cause skin irritation, hot sensation, rashes or allergy[3]. Many people prefer to use a repellent from natural origin, natural product or herbal product and the demand for natural repellent is gradually increasing. The natural repellents, especially repellents from herbal essential oils are safe to human and environment and herbal essential oils are reported to have repellency against mosquito adults. Strong repellent actions of *Azadirachta indica*, *Cymbopogon martini* var sofia, *Cybopogon citratus* (*C. citratus*), *Cymbopogon nardus* (*C. nardus*) and *Ocimum* sp. have been reported against some mosquitoes[4-11].

Many researchers pointed that essential oils from *Acantholippia salsoloides*, *Aloysia catamarcensis*, *Aloysia polytachya*, *Lippia integrifolia*, *Lippa junelliana*, *Baccharis salicifolia*, *Eupatorium buniifolium*, *Tagetes filifolia*, *Silene macroserene*, *Eugenia caryophyllus*, *Litsea cubeba*, *Melaleuca leucadendron*, *Melaleuca quinquenervia*, *Viola odorata*, *Nepeta cataria*, *Cinnamomum osmophloeum*, *Cymbopogon winterianus*, *Syzygium aromaticum* (*S. aromaticum*), *Iantheoxylum limonelii* show strong repellency against *Ae. aegypti*, *Aedes albopitus* (*Ae. albopitus*), *Culex quinquefasciatus* (*Cx. quinquefasciatus*), *An. dirus* and *Anopheles minimus* (*An. minimus*)[3,4,12-22].

*Corresponding author: Duangkamon Sritabutra, Entomology and Environment Programme, Department of Plant Production Technology Section, King Mongkut’s Institute of Technology Ladkrabang, Chalong Krung Road, Lad Krabang, Bangkok 10520, Thailand.
E-mail: i_zanaa_ploy@hotmail.com
Foundation Project: Supported by Faculty of Agricultural Technology, KMITL, Thailand.
In Thailand, Tawatsin et al.\(^{[23]}\) reported the volatile oils from *Curcuma longa*, *Cymbopogon winterianus* and *Ocimum americanum* with the addition of 5% vanillin repelled *An. dirus*, *Ae. aegypti* and *Cx. quinquefasciatus* under mosquito cage conditions for up to 8 h. Trongtokit et al.\(^{[24]}\) reported that *C. nardus*, *Posgostrmon cablin*, *S. aromaticum* and *Zanthoxylum limonella* were the most effective repellents against *Ae. aegypti*, *Cx. quinquefasciatus* and *An. dirus* and could prevent mosquito bites for 2–4 h. The essential oils from citronella and eucalyptus with the addition 5% vanillin repelled *Ae. albopitus* with the protection time up to 5 h\(^{[25]}\). The essential oils from *Psidium guajava*, *Piper nigrum* and *Curcuma longa* are reported to have repellency against *Ae. aegypti*, *Ae. albopitus*, *An. dirus* and *Cx. quinquefasciatus*\(^{[26]}\), Choocrote et al.\(^{[27]}\) reported the essential oil of *Zanthoxylum piperitum* fruit may prove useful in the development of mosquito repellents as an effective personal protection measure against *Ae. aegypti* mosquito bites. Phasomkusolsil and Soonweru\(^{[28]}\) reported the plant oils from *Zingiber cassumunar* and *Ocimum basilicum* (*O. basilicum*) are effective against *An. minimus*, *Cx. quinquefasciatus* and *Ae. aegypti*. Oyedele et al.\(^{[29]}\) reported the formulation of mosquito–repellent product from lemongrass oil (*Cymbopogon citrates*) found that 15% v/w hydrophilic ointment formulation of the oil exhibited more than 50% repellency lasting 2–3 hours against mosquito bite–deterrent\(^{[29]}\). Ansari et al.\(^{[30]}\) reported *Zingiber sp.* from citronella, *Eucalyptus globules*, *Zingiber officinale*, *Cymbopogon nardus*, *Allium sativum*, *Ocimum basilicum*, *Mentha piperita*, *Piper nigrum*, *Cinnamomum verum*, *Z. officinale*, *M. piperita* and *M. piperita* leaves extract. These agents are very toxic to humans and animals. In study, observed 44 formulations of mosquito repellents containing plant extracts such as citronella oil, eucalyptus oil, tea tree oil, turmeric oil, bergamot oil, lavender extract, tobacco–leaves extract, clove extract and neem–leaves extract. These agents can prevent up to 6.3 hours, which are only 12 species that have been registered to be sold in the market and must be protected at no less than 2 hours by a variety of formats such as citronella oil, eucalyptus oil and tea tree oil were the main active ingredients. However, National Institute of Public Health has developed a substance that consists turmeric oil and eucalyptus oil found that this repellent provide protection time for 7 hours against *Ae. aegypti* and at least 8 hours against *Cx. quinquefasciatus* and *An. dirus*\(^{[31]}\).

In the present study, an attempt has been made to evaluate the repellent efficacy of herbal essential oils and their combinations against *Ae. aegypti* and *An. dirus* under laboratory conditions.

2. Materials and methods

2.1. Herbal essential oils

The herbal essential oils used as mosquito repellents were extracted from each plant by steam distillation of the leaf *Eucalyptus globules* (*E. globules*), leaf of *Mentha piperita* (*M. piperita*), bulb of *Allium sativum* (*A. sativum*), fruit of *Citrus sinensis* (*C. sinensis*), stem of *C. nardus*, stem of *C. citratus*, flower of *S. aromaticum* and leaf of *O. basilicum*. Soybean oil was obtained from the market and used as bases of the repellents. The repellents were formulated into 2 groups i.e. herbal essential oils and the combination of herbal essential oils.

2.2. Mosquitoes

Ae. aegypti and *An. dirus* were reared and maintained in the Laboratory of Entomology and Environment, Plant Production Technology Section, Faculty of Agricultural Technology Ladkrabang, Bangkok, Thailand. Adults of two mosquito species were fed on 10% glucose under (28±2 °C) and (78±2% relative humidity). 5 days old of 250 female mosquitoes per insect cage (30 cm × 30 cm × 30 cm) were starved for 8 h before testing.

2.3. Repellent test

Herbal essential oils and their combinations were screened for repellency against *Ae. aegypti* and *An. dirus* under laboratory conditions ([28±2 °C] and [78±2% relative humidity]) by using human–bait method and TISI guidelines. *Ae. aegypti* was tested during the daytime from 8.00 am to 4.00 pm, while *An. dirus* was tested during night from 4.00 pm to 12.00 pm\(^{[28,32]}\).

Before application of the repellents, the arms of three human volunteers were washed and cleaned thoroughly with distilled water. Both arms were covered with rubber sleeve with a window area of (3 cm × 10 cm) on the ventral part of forearm. The left arm was used for treatment and the right arm for control. 0.1 mL of test repellent was applied to the treatment area of left forearm of each volunteer. After applying the test repellent, the volunteer was instructed not to rub, touch or wet the treated forearm. The right forearm, which acted as a control was not treated and was exposed for up to 30 sec to mosquito cage (30 cm × 30 cm × 30 cm) contained 250 nulliparous female mosquitoes (5–7 days old). If at least two mosquitoes landed on or bit the arm the repellency test was then continued. The test continued until as least two bites occurred in a 3–min period. If no mosquitoes bit or landed during the 3–min period the arm was withdrawn from the cage. The repellency test period was carried out every 30 min until fewer than 2 mosquitoes bit or landed during the 3–min study period and then the repellency test was stopped. The time between application of the repellents was recorded as the protection time.

2.4. Data analysis

The median protection time was used to compare the tested repellents. Differences in significance were analyzed by one–way analysis of variance (ANOVA) and Duncan’s new multiple range test (DMRT). Percentage of mosquito biting or landing was calculated for each test using the following formula\(^{[26,28]}\).

\[
\text{% Biting} = \frac{B}{250} \times 100
\]

Where B is the total number of biting or landing by the end of the test. The test was carried out 3 times per sample.

3. Results
Table 1
List of herbal essential oil repellents and combination of herbal essential oil repellents tested against *Ae. aegypti* and *An. dirus*.

<table>
<thead>
<tr>
<th>Category</th>
<th>Code No.</th>
<th>Common name / Scientific name</th>
<th>Plant used</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential oils</td>
<td>E1</td>
<td>Eucalyptus (E. globulus)</td>
<td>Leaf</td>
<td>10% Eucalyptus oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>Peppermint (M. piperita)</td>
<td>Leaf</td>
<td>10% Peppermint oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>Garlic (A. sativum)</td>
<td>Bulb</td>
<td>10% Garlic oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>Orange (C. sinensis)</td>
<td>Fruit</td>
<td>10% Orange oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td>Citronella grass (C. nardus)</td>
<td>Stem</td>
<td>10% Citronella grass oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td>Lemon grass (C. citratus)</td>
<td>Stem</td>
<td>10% Lemon grass oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>Clove (S. aromaticum)</td>
<td>Flower</td>
<td>10% Clove oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>E8</td>
<td>Sweet basil (O. basilicum)</td>
<td>Leaf</td>
<td>10% Sweet basil oil in soybean oil</td>
</tr>
<tr>
<td>Combination of essential oils</td>
<td>M1</td>
<td>Citronella grass + Orange</td>
<td>Stem, fruit</td>
<td>5% Citronella grass oil + 5% orange oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>Citronella grass + Eucalyptus</td>
<td>Stem, leaf</td>
<td>5% Citronella grass oil + 5% eucalyptus oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>Lemon grass + Orange</td>
<td>Stem, fruit</td>
<td>5% Lemon grass oil + 5% orange oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>Clove + Eucalyptus</td>
<td>Flower, leaf</td>
<td>5% Clove oil + 5% eucalyptus oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>Peppermint + Eucalyptus</td>
<td>Leaf, leaf</td>
<td>5% Peppermint oil + 5% eucalyptus oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>Citronella grass + Lemon grass</td>
<td>Leaf, fruit</td>
<td>5% Citronella grass oil + 5% lemon grass oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>Eucalyptus + Sweet basil</td>
<td>Leaf, leaf</td>
<td>5% Eucalyptus oil + 5% sweet basil oil in soybean oil</td>
</tr>
<tr>
<td></td>
<td>M8</td>
<td>Peppermint + Orange</td>
<td>Leaf, leaf</td>
<td>5% Peppermint oil + 5% orange oil in soybean oil</td>
</tr>
</tbody>
</table>

Table 2
Efficacy of herbal essential oil formulation E1–E8 and M1–M8, as repellents against *Ae. aegypti* and *An. dirus* (mean ± SD).

<table>
<thead>
<tr>
<th>Repellents</th>
<th>Protection time</th>
<th>Biting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ae. aegypti</td>
<td>An. dirus</td>
</tr>
<tr>
<td>Essential oils</td>
<td>E1</td>
<td>81.67±11.55</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>98.33±15.28</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>31.67±5.77</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>50.65±2.33</td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td>88.33±15.28</td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td>98.66±11.56</td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>80.33±10.56</td>
</tr>
<tr>
<td></td>
<td>E8</td>
<td>65.00±10.00</td>
</tr>
<tr>
<td>Soybean oil (positive control)</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
</tr>
<tr>
<td>Untreated (negative control)</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Combination of essential oils</td>
<td>M1</td>
<td>98.67±10.58</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>92.73±12.28</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>60.53±10.34</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>60.33±15.28</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>80.35±15.28</td>
</tr>
<tr>
<td></td>
<td>M6</td>
<td>60.31±5.78</td>
</tr>
<tr>
<td></td>
<td>M7</td>
<td>98.87±10.28</td>
</tr>
<tr>
<td></td>
<td>M8</td>
<td>70.33±15.30</td>
</tr>
<tr>
<td>Soybean oil (positive control)</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
</tr>
<tr>
<td>Untreated (negative control)</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
</tbody>
</table>

Mean in each column against each species followed by the same letter are not significantly different (P>0.05) by one-way ANOVA with DMRT.

Table 1 listed herbal essential oils and combinations of essential oil repellents tested against *Ae. aegypti* and *An. dirus*. The protection time of herbal essential oils formulation E1–E8, soybean oil (positive control) and untreated (negative control) against *Ae. aegypti* and *An. dirus* was shown in Table 2. The lemon grass oil repellent (E6) had the best efficiency against *Ae. aegypti* and *An. dirus* in which the protection times were (98.66±11.56) and (98.00±15.28) min, respectively. All herbal essential oil repellents exhibited lower protection against *Ae. aegypti* and *An. dirus* than Thai Industrial Standards Institute (TISI) determines whose protection time against mosquitoes should be more than 120 min. The protection times of soybean oil (positive control) and untreated (negative control) against two mosquito species were (5.00±0.00) and (0.00±0.00) min, respectively.

The percentage of *Ae. aegypti* and *An. dirus* biting or landing on soybean oil (positive control), untreated (negative control) and treated areas was shown in Table 2. Eucalyptus oil (E1) had the best efficiency against two mosquitoes species in which the biting percentage was 0.67% and 0.80%, respectively. All tested repellents exhibited the biting percentage against two mosquitoes species ranged from 0.67% to 0.97% while soybean oil (positive control) and untreated (negative control) gave a range of 4.00% to 10.00%.

Comparison of protection time and biting percentage for each repellent essential oil group i.e. E1–E8 and M1–M8 against *Ae. aegypti* and *An. dirus* was shown in Figure 1 and Figure 2.
The result of repellency for herbal essential oil formulation M1–M8 soybean oil (positive control) and untreated (negative control) against two mosquitoes species were shown in Table 2. The protection time of herbal essential oil formulation (M1–M8) against *Ae. aegypti* was 60–98 min and against *An. dirus* was 48–210 min and biting percentage gave a range of (0.80–1.10)\% and (0.80–0.93)\%, respectively. The repellents showing the best protection time for *Ae. aegypti* were citronella grass oil + orange oil [M1 (98.67±10.58) min] and eucalyptus oil + sweet basil oil [M7 (98.87±10.28) min] with biting percentage of 0.80\% and 0.93\%, respectively. For *An. dirus*, the protection time of eucalyptus oil + sweet basil (M7) was (210.00±10.70) min and peppermint oil + orange oil (M3) was (125.33±5.77) min with biting percentage of 0.93\% and 0.93\%, respectively.

While the protection time and biting percentage of soybean oil and untreated against two mosquitoes species were (5.00±0.00) and (0.00±0.00) min and (4.80–6.00)\% and (10.00–12.00)\%, respectively.

4. Discussion

The essential oil derived from lemon grass, peppermint, eucalyptus, citronella grass, and clove were effective against the two mosquito species and that from garlic, orange and sweet basil showed the least protection time. The combination of essential oil showed better protection time against two mosquito species than each essential oil. The combinations of eucalyptus oil + sweet basil oil and peppermint oil + orange oil were effective and the protection time was more than 120 min and biting rate was less than 1.0\%. Therefore, the two combinations are efficient in repellency and can be used as biting deterrent. Treatment with them makes no skin irritation on forearm area of the test volunteers.

However, the protection time of this study is short in some essential oils and some formulations can improve the protection time. Many researchers pointed that the volatile oil from plants should be formulated with 5%–10% vanillin in order to improve the repellent efficacy\(^{[23,27]}\). Although, the repellent effects of herbal essential oils do not usually last as long as synthetic chemical which can protect from mosquito bite for up to 6 h\(^{[31]}\), and none of herbal essential oils tested up to now provide the wide effectiveness and duration of protection time, herbal essential oil repellents are safe for human life, human and domestic animal skin with no side effect and no feedback of environmental ill effect.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

The authors are grateful to Faculty of Agricultural Technology, King Mongkut’s Institute Technology Ladkrabang, Bangkok, Thailand for supporting this study. Grateful thanks are due to the volunteers for their assistance in repellent tests.
References

